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Abstract

For the deceptively innocent case of monomolecular reactions, only, we
embark on a systematic mathematical analysis of the steady state response
to perturbations of reaction rates. Our function-free approach does not
require numerical input. We work with general, not necessarily mono-
tone reaction rate functions. Based on the directed graph structure of the
monomolecular reaction network, only, we derive which steady state con-
centrations and reaction fluxes are affected by a rate change, and which
are not. Moreover, we establish a transitivity property of the mutual in-
fluence of reaction fluxes. The results and concepts developed here, from
a mathematical view point, are of applied relevance including metabolic
networks in biology; see our companion paper [MoFi14].
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1 Introduction

We study the response of steady states to perturbations of reaction rates in
chemical reaction networks. Strong motivation for our study comes from recent
advances of experimental techniques in systems biology of metabolic networks.
In our complementary companion paper [MoFi14], for example, we address the
steady state response of the tricarboxylic citric acid cycle (TCAC) in the gly-
colytic carbon metabolism of E. coli bacteria. Perturbations are effected, experi-
mentally, by changing the levels of enzymes which selectively catalyze the various
reactions in the network; see [Ishetal07]. Based on computer algebra we have
calculated symbolic response matrices, in [MoFi14]. We obtained partial conclu-
sions on the increase, decrease, or zero change of steady state concentrations and
reaction flux rates. We also observed a transitivity property of the flux response
in several specific examples. Notably our results were based on the reaction net-
work structure, only, together with mild positivity and monotonicity conditions
on the reaction rates. In that sense our results were function-free.

In the present paper, we offer a first step towards a mathematical understand-
ing of the observations in [MoFi14]. Specifically we show how to predict zero
versus nonzero flux changes Φj′j∗ of reaction j′, as a result of a rate increase of
reaction j∗. Our prediction is based on the reaction network structure only; see
theorem 1.1 below. We say that j∗ influences j′, in symbols j∗ ; j′, if Φj′j∗ 6= 0.
In theorem 1.2 we show that the relation ; is transitive, indeed, as was first
observed in the examples of [MoFi14]. In theorem 1.3 we draw conclusions on
the changes δxm of steady state concentrations xm, for the metabolite m, from
the flux changes Φj′j∗ of theorem 1.1. This is of practical relevance because ex-
periments are not able to measure the flux response, usually, but determine the
concentration response to rate perturbations.

At present, our mathematical results can only be called a first step because they
are limited to monomolecular reactions: any reaction j just converts one metabo-
lite mj into another one, mj; see our assumption (1.1) below. This is a severe
restriction which, for example, excludes the TCAC cycle. Nonetheless we find it
worthwhile to diligently settle the monomolecular case, which is less intuitive than
it might appear at first sight, before jumping to general conclusions prematurely.

Our mathematical setting and notation is as follows. A monomolecular reaction
network is a directed graph Γ with vertex set M ∪ {0} and directed edges (alias
arrows) j ∈ E. We call m ∈ M the metabolites. Their total number is M , and
they are distinct from the zero-complex 0 introduced by Feinberg; see [Fe95] and
the references there. The E distinct arrows j ∈ E are also called reactions

(1.1) j : mj → mj

from mj ∈ M ∪ {0} to a different mj ∈ M ∪ {0}. Any ordered pair (m, m) is
connected by at most one arrow. Self-loops m = m are forbidden, but reverse
arrows from m to m 6= m are allowed.
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A reaction j: m → m is called reversible if the reverse reaction j: m → m also
occurs in Γ. A path in Γ is a succession of edges and vertices, without any self-
intersection. Unless stated otherwise, all paths are considered to be directed, i.e.
they follow edges by their arrow orientation. We speak of a di-path occasionally,
to emphasize direction. An undirected path where the two end points, only,
coincide is called a cycle. If the cycle is directed we speak of a di-cycle.

Deviating from standard terminology, we call the tail mj of the arrow j in (1.1)
the mother metabolite of reaction j. Thus we have a map

(1.2) m : E→M ∪ {0}

such that m(j) = mj is the mother of j. In more standard chemical terminology
mj is called the reactant or educt of reaction j, in contrast to the reaction product
mj obtained by a map m(j):= mj. We call the reactions j in E0:= m−1(0) the
feed reactions j: 0→ mj, and the reactions j: mj → 0 the exit reactions m−1(0).

Let em ∈ RM be the m-th unit vector, for any nonzero metabolite m ∈ M,
and define e0 = 0 ∈ RM . Then the dynamics of the vector x = (xm)m∈M of
concentrations xm of the metabolites m ∈M is given by the ODE

(1.3) ẋ = f(r, x) :=
∑
j∈E

rj(xm(j)) (em(j) − em(j)) .

Here we consider the reaction rate functions r = (rj)j∈E as given parameters. We
define x0:= 1. We assume positivity of the reaction rate functions rj ∈ C1,

(1.4) rj(ξ) > 0 for ξ > 0 ,

as well as the existence of a positive steady state x∗ > 0, i.e.

(1.5) 0 = f(r, x∗) ,

for some x∗ with all components x∗m > 0. In practice (1.5) just means that we
omit zero components of x∗. Likewise we omit vanishing reactions in (1.4).

Our final assumption requires the network to be regular at the steady state x∗,
i.e. the Jacobian fx(r, x

∗) of the partial derivatives with respect to x of the ODE
vector field f is required to be nonsingular:

(1.6) det fx(r, x
∗) 6= 0 .

This enables us to study the steady state response to any perturbation of the rate
function rj∗ of any reaction j∗, by the standard implicit function theorem. For
any continuously differentiable function ρ ∈ C1, the C1-small perturbation

(1.7) rε := r + ερ

of r = r0 induces a response curve x∗(ε), for small real ε, such that

(1.8) fr · ρ+ fx · ddεx
∗ = 0
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at rε, x∗(ε). By regularity (1.6), this determines the resulting perturbation of
x∗. Let us consider the special case where ρ = (ρj)j∈E, ρj = ρj(xm(j)) does not
change the reaction network and only perturbs reaction j∗, so that

ρj(ξ) = 0 , for j 6= j∗ , and(1.9)

ρj∗(x
∗
m(j∗)) = 1 .(1.10)

Here we have normalized the perturbation of rate j∗, without loss of generality.
For this particular choice, we define the resulting (infinitesimal) concentration
response δxj

∗
m of metabolite m at steady state as

(1.11) δxj
∗

m :=
d

dε

∣∣∣
ε=0

x∗m(ε) .

The precise numerical values δxj
∗
m0

of the concentration responses depend on the
precise numerical values of the derivatives rjm:= rj

′(x∗m), for m = m(j). Our
function-free approach does not rely on such numerical data, which are often
unknown. We do not even require positivity of rj

′, in the present paper. Instead
we consider these rjm as variables which enter the responses δxj

∗
m0

via certain
rational expressions. We call δxjm0

algebraically nonzero if δxj
∗
m0
6= 0, as a rational

function of the variables rjm with m = m(j). In particular this implies δxj
∗
m0
6= 0,

numerically, except on real algebraic varieties of codimension at least 1 in the
space of data rjm.

On the other hand, this view point relies on the derivative variables rjm = rj
′(x∗m)

to be independent of the equilibrium flux values rj(x
∗
m) themselves. This indepen-

dence fails, evidently, in exceptional cases like rj = a · exp(xm). More generally,
independence fails whenever the class of the nonlinearities rj itself solves one
and the same ODE rj

′ = hj(rj) for some fixed function hj. But already two-
parameter families of functions rj are rich enough to justify our function-free
approach via algebraic independence of rj and rj

′. Rate functions of Michaelis-
Menten or Langmuir-Hinshelwood type, as opposed to mere mass action kinetics,
are favorable specific examples.

Theorem 1.1. Let positivity and regularity assumptions (1.4), (1.5) hold for the
monomolecular reaction network (1.1) – (1.3). Moreover assume the Jacobian
determinant in (1.6) is nonzero, algebraically.

Then the concentration response δxj
∗
m of any metabolite m ∈M to a rate pertur-

bation (1.7)– (1.10) of any reaction j∗ ∈ E satisfies

(1.12) δxj
∗

m 6= 0

algebraically if, and only if, there exist two directed paths γ0 and γm for which
the following four conditions all hold true:

(i) both paths emanate from the mother reactant m∗ = m(j∗) of reaction j∗;
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(ii) one of the paths contains reaction j∗;

(iii) the paths γ0 and γm terminate at the vertices 0 and m, respectively;

(iv) the two paths are disjoint except for their shared starting vertex m∗.

The condition on γm may appear to be straightforward, perhaps, to describe some
“domain of influence” of the perturbation j∗. The condition on the exit path γ0,
however, is less intuitive – particularly when the effects of j∗ ∈ γ0 spill over to
the side branch γm.

In the special case of m = m∗ the path γm = {m∗} does not contain any edges.
If, in addition, reaction j∗ is the only child arrow emanating from mother vertex
m∗, then a path γ0 from m∗ to 0 always exists and

(1.13) δxj
∗

m∗ 6= 0 ;

see proposition 2.1 below.

As a complement to the above theorem on the concentration sensitivity δxj
∗
m of

metabolite m in response to a rate perturbation of reaction j∗, we address flux
sensitivity next. Let Φj′j∗ denote the (infinitesimal) change of the flux through
reaction arrow j′, in response to a rate perturbation of reaction j∗, i.e.

(1.14) Φj′j∗ := δj′j∗ + rj′m(j′) δx
j∗

m(j′) .

The Kronecker-delta δj′j∗ indicates the explicit flux change caused by the external
perturbation at j∗ in reaction j′ = j∗, only. The second term accounts for the
flux change in any reaction j′ which is caused, implicitly, by the concentration
response δxj

∗

m(j′) of the mother reactant m(j′) to the external perturbation at j∗.
We denote partial derivatives of reaction rates at the equilibrium x∗ by

(1.15) rjm :=
∂

∂xm
rj(x

∗) =

{
rj
′(x∗m) for m = m(j) ,

0 otherwise .

See also assumption (1.4). We say that reaction j∗ influences reaction j′, in
symbols: j∗ ; j′, if the flux response Φj′j∗ is algebraically nonzero:

(1.16) j∗ ; j′ ⇐⇒ Φj′j∗ 6= 0 .

Theorem 1.2. Let the assumptions of theorem 1.1 hold, and consider any pair
of edges j′, j∗ ∈ E, not necessarily distinct.

Then j∗ influences j′, i.e. the flux response Φj′j∗ of reaction j′ to a rate pertur-
bation (1.7) – (1.10) of reaction j∗ satisfies

(1.17) Φj′j∗ 6= 0

algebraically, if, and only if, there exist two directed paths γ0 and γ′ for which the
following four conditions all hold true:
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Figure 1.1: Summarizing properties (i) – (iv) of theorem 1.2 for the paths γ0
i ,

top, and γ′i, bottom. Property (i): both paths emanate from m∗i ; for (ii): one of
them contains j∗i ; for (iii): termination is at vertex 0 and edge j′i respectively;
for (iv): the two paths are disjoint except for m∗i . The index i will be used in
section 4.

(i) both paths emanate from the mother reactant m∗ = m(j∗) of reaction j∗;

(ii) one of the paths contains reaction j∗;

(iii) the path γ0 terminates at vertex 0, and γ′ terminates with reaction edge
j′: m′ → m′, but omitting the product (head) vertex m′ = m(j′) of j′;

(iv) except for their shared starting vertex m∗, the two paths γ0 and γ′ are dis-
joint.

For an illustration see fig. 1.1. The conditions on the paths γ0 and γ′ in theo-
rem 1.2 are quite similar to those on γ0 and γm in theorem 1.1. However, there
are some subtle differences. Let m:= m(j′) denote the mother reactant of reac-
tion j′. Then γ′ just is γm, with the edge j′ appended. In particular γ′ always
contains the edge j′ and then terminates.

Consider the single child case, for example, where j∗ is the only child arrow
emanating from the mother vertex m∗. Then

(1.18) Φj′j∗ = 0 ,

for all j′ ∈ E by theorem 1.2, even though δxj
∗

m∗ 6= 0 algebraically, by (1.13)
and theorem 1.1. This follows because the disjointness condition (iv), in case
Φj∗j∗ 6= 0, requires two different di-paths γ0, γ′ to emanate, by (i), from the same
single-child mother m∗ – a contradiction. This effect is owed to the Kronecker-
delta in the flux sensitivity (1.14), of course. It is also easy to prove (1.18) directly.
Indeed (1.8) – (1.10), (1.15) at the single-child vertex m∗ imply

(1.19) δxj
∗

m∗ = −1/rj∗m∗ 6= 0 .
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This implicit response compensates the explicit external flux increase by ρ, at j∗,
so that (1.14) implies Φj∗j∗ = 0. Moreover (1.8) then implies

(1.20) δxj
∗

m = 0

for all other metabolites m 6= m∗. This first example is compatible, of course,
with our statements of theorems 1.1 and 1.2.

Interesting reaction networks contain more reaction edges than metabolites. The
flux sensitivity matrix

(1.21) Φ := (Φj′j∗)j′, j∗∈E

of theorem 1.2 is therefore larger than the more concise concentration sensitivity
matrix

(1.22) δx := (δxj
∗

m)j∗∈E,m∈M .

On the other hand, the square flux sensitivity matrix Φ allows for the concept of
transitivity of influence: we call the flux influence relation j∗ ; j′, alias Φj′j∗ 6= 0
algebraically, transitive if

(1.23) j1 ; j2 and j2 ; j3 implies j1 ; j3 .

Transitivity sounds completely tautological: if a change in the rate of reaction j1
produces a change in j2, and a change of the rate of j2 propagates to j3, then j1
also ought to have influence on j3. Due to the implicit concentration responses
δx of the network, however, this is far from obvious. Alas, it is true.

Theorem 1.3. Let the assumptions of theorem 1.1 hold. Then the flux sensitivity
matrix Φ of (1.21) is transitive. In other words, transitivity (1.23) holds true for
the flux influence relation j∗ ; j′ defined by Φj′j∗ 6= 0 algebraically in (1.16).

Based on flux transitivity of the influence relation ;, we can define an influence
equivalence relation ≈ on the set E of reaction edges j as follows:

(1.24) j ≈ j ,

and, for all edges j1 6= j2,

(1.25) j1 ≈ j2 ⇐⇒ j1 ; j2 and j2 ; j1 .

Reflexivity (1.24) has to be assumed separately because self-influence j ; j fails,
for example, when edge j is a single child. The equivalence classes of ≈ are called
flux components Fi. They form the vertices of an acyclic directed flux influence
graph F (Γ). A directed edge from any vertex F1 to any other vertex F2 indicates
that for some j1 ∈ F1 and j2 ∈ F2, and hence for all, we have the influence
j1 ; j2, but not vice versa.
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The flux influence graph is a very convenient concept to visualize the hierarchy
of reactions and their influence. For example define the influence sets

(1.26) I(j∗) := {j′ ∈ E; j∗ ; j′} ,

for any reaction j∗ ∈ E. In case j∗ does not influence itself, i.e. for Φj∗j∗ =
0, the influence set I(j∗) is the set of all reactions j′ “below” j∗ in the flux
influence graph. In other words, I(j∗) consists of the union of j′ in those other
flux components Fi which can be reached from j∗. In case of self-influence j∗ ; j∗,
i.e. for Φj∗j∗ 6= 0 algebraically, the flux component of j∗ itself is added to I(j∗).

The remaining paper is organized as follows. Section 2 introduces some more
graph jargon and collects some consequences of our positivity and regularity as-
sumptions (1.4) – (1.6) for the monomolecular network (1.1) – (1.3). In particular
we show that the reaction di-graph is strongly connected. Moreover we discuss
di-cycles and spanning trees. Theorems 1.1, 1.2, and 1.3 are proved in sections 5,
3, and 4, respectively.

In section 6 we discuss several explicit illustrative examples of artificial, but in-
structive, monomolecular reaction networks, their concentration and flux sensi-
tivities, and their influence graphs. Realistic networks are rarely monomolecular,
of course. For more realistic examples we have already referred to [MoFi14] and
the references there. Somewhat to our surprise, these networks also exhibited
flux transitivity. For the carbon metabolism of the E. coli TCA cycle, the flux
influence graph was particularly helpful to identify and understand the control
hierarchy of its functional constituents.

Acknowledgement. Generous hospitality during extended very fruitful and en-
joyable working visits which made this work possible is mutually acknowledged
with particular gratitude. We express our sincere thanks to the following peo-
ple for their useful comments: Yoh Iwasa, Shuji Ishihara, Hirohisa Kishino, Hi-
roshi Kokubu, Hiroshi Matano, Yasumasa Nishiura, Hiroe Oka, Kiyotaka Okada,
Shingo Iwami, and Hannes Stuke. Delightful typesetting of a messy manuscript
was accomplished by Ulrike Geiger. This work was supported in part by the JST
CREST program of Japan, and the Deutsche Forschungsgemeinschaft, SFB 910
“Control of Self-Organizing Nonlinear Systems”.

2 Positivity, connectivity, and cycles

In the present section we collect some further notions about graphs. In lemma 2.2
and corollary 2.3 we express regularity assumption (1.6) in graph terminology:
the Jacobian determinant f ′(x∗) is algebraically nonzero if, and only if, there
exists a directed path to 0 from every metabolite m ∈ M. In particular the
monomolecular reaction network is (weakly) connected by its (undirected) edges.
The complementary positivity assumptions (1.4), (1.5) for the stationary reaction
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rates rj, on the other hand, ensure that each (weakly) connected component is
strongly connected; see lemma 2.4.

Our definition of weak and strong connectivity of vertices m, m′ is standard. In
undirected graphs we say m ∼ m′ are weakly connected if there exists a possibly
empty, undirected path joining m and m′. In di-graphs, m ≈ m′ are strongly
connected if there exist two possibly empty di-paths: one from m to m′ and
one from m′ to m. The equivalence classes of the vertex equivalence relations
∼ and ≈ are called weak and strong connected components, respectively. The
flux equivalence ≈ defined in (1.24), (1.25) above is another example of strong
connectivity on the directed flux graph with vertices j ∈ E and directed edges
j1 ; j2 defined by flux influence. The flux components are the strong connected
components of the flux graph.

Strong connectivity has been called weak reversibility by Feinberg; see [Fe95]
for an overview. In the more restrictive setting of mass action kinetics, but
for more general reaction networks of Feinberg deficiency δF = 0, uniqueness
and asymptotic stability of the positive equilibrium x∗ has been proved, in each
stoichiometric compatibility class. As a simple consequence of proposition 2.1
below we observe that monomolecular networks are of deficiency zero. In a very
interesting recent development, uniqueness of the positive equilibrium x∗ has also
been shown, under much less restrictive kinetic assumptions, for “concordant”
networks; see [ShFe13].

Our discussion of regularity assumption (1.6) is purely algebraic, in terms of the
abstract independent variables

(2.1) rjm = rj
′(x∗m) ,

with m = m(j) ∈M ∪ {0} the mother of reaction j ∈ E. We conveniently, but
only temporarily, forget that x∗ is a stationary solution (1.5) of the ODE (1.3),
and we do not require positivity (1.4). We decompose

(2.2) f ′(x∗) = SR

where R = (rjm)j∈E,m∈M is the E×M reactivity matrix of the nontrivial deriva-
tives rjm = rj

′(x∗m) with m = m(j), viewed as independent variables, and filled
up by zeros as in (1.15). The M × E stoichiometric matrix S: RE → RM is
defined by

(2.3) Sej =

{
em(j) − em(j) if m(j) 6= 0 ,

em(j) if m(j) = 0 .

Here ej defines the j-th unit vector in RE, and em the m-th unit vector in RM

with the convention e0:= 0.

Our main tool in the proof of lemma 2.2 below, as well as in the theorems,
is the construction of an augmented matrix A: RM × RN → RE, where N :=
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dim ker S accounts for the kernel of the stoichiometric matrix S: RE → RM . Let
c1, . . . , cN ∈ RE be any basis for ker S, with components ckj , and define the E×N
matrix

(2.4) C := (ckj )j∈E, k∈{1,...,N} .

Then the augmented matrix A is defined as the block matrix

(2.5) A := (R, C) .

At first it looks redundant to lift issues concerning the M ×M matrix f ′(x∗) to
the possibly much larger E × (M + N) matrix A. The reaction aspect R and
the graph aspect C of S, however, become clearly separated and can now be
addressed much more conveniently.

We study the graph aspect first. For the moment we ignore all orientations of
the edge arrows j and consider Γ = (M ∪ {0}, E) as an undirected graph. We
also decompose

(2.6) S = P0 D

where the projection P0: RM+1 → RM simply drops the last component associ-
ated to the vertex 0 in Γ. The matrix D: RE → RM+1 is the boundary map from
edges j ∈ E to vertices m ∈M ∪ {0} in Γ, defined by

(2.7) Dej := em(j) − em(j) .

The homologies H0(Γ) and H1(Γ) are defined by

(2.8)
H0(Γ) := (range D)⊥ ≤RM+1 ;

H1(Γ) := ker D ≤RE .

The alternating sum of their dimensions is the Euler characteristic

(2.9) X(Γ) := dimH0 − dimH1 = M + 1− E ,

alias the negative Fredholm index of the boundary map D. Note how dimH0

counts the (weakly) connected components W of Γ; a basis of H0 is given by the
indicator functions 1W of the component vertices.

A maximal spanning tree T of an undirected graph Γ is any acyclic subgraph of
Γ which becomes cyclic whenever any edge is added to T . Note that T must
contain all vertices M ∪ {0} of Γ, i.e. T = (M ∪ {0}, E(T )). Any edge j 6∈ E(T )
generates a unique undirected cycle cj in T ∪ {j}, by acyclicity of T . Note how
cj ∈ ker D = H1(Γ) are linearly independent. By maximality of T , the cycles cj

form a basis for H1, and hence

(2.10) dimH1 = E − E(T )

where E(T ) counts the edges of any maximal spanning tree T of Γ.
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Proposition 2.1. In the above setting and notation, the kernel of the stoichio-
metric matrix S coincides with the first homology: H1(Γ) = ker D = ker S. Equiv-
alently,

(2.11) dimH1(Γ) = N .

Moreover the following properties are mutually equivalent

(i) S: RE → RM is surjective;

(ii) N := dim ker S = E −M ;

(iii) the matrix A: RM+N → RE is square;

(iv) Γ is (weakly) connected, i.e.

(2.12) dimH0(Γ) = 1 .

Proof. We prove ker D = ker S and (2.11) first. Obviously S = P0 D implies
ker D ≤ ker S. Equality holds if, and only if, the spanning element e0 of ker P0,
which is omitted by P0, satisfies

(2.13) e0 6∈ range D = H0(Γ)⊥ .

Admittedly e0 ⊥ 1W , for the indicator function of any (weakly) connected com-
ponent of Γ which does not contain vertex 0. However eT0 ·1W0 = 1, by definition,
for the (weakly) connected component W0 of the vertex 0 itself. This proves
ker D = ker S, and hence (2.11):

(2.14) dimH1(Γ) := dim ker D = dim ker S := N .

To prove the equivalence of (i) – (iv) we invoke elementary linear algebra for the
stoichiometric matrix S: RE → RM . Abbreviate def S:= dim ker S and cork S:=
codim range S. Then

(2.15) E −M = def S− cork S = N − cork S .

This proves the equivalence (i) ⇐⇒ (ii). Trivially (ii) ⇐⇒ (iii). The equivalence
(ii) ⇐⇒ (iv), alias (2.12), follows from

(2.16) dimH0 = dimH1 +M + 1− E = 1 +N − (E −M) .

Here the first equality is (2.9), and (2.11) provides the second equality. This
proves the proposition. ./
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In the slightly different language of Feinberg, proposition 2.1 shows that monomolec-
ular networks possess deficiency zero; see [Fe95]. Indeed the Feinberg deficiency
δF is defined as δF := dim ker S− dim ker D = 0, by (2.14).

We can now return to the role of the symbolic reaction part R for the determinant
of the Jacobian matrix f ′(x∗) = SR and in the augmented matrix A = (R, C);
see (2.2) and (2.5).

Lemma 2.2. Consider any directed graph Γ = (M ∪ {0}, E) as in (1.1) and
view det(SR) as a formal polynomial in the nontrivial derivative variables rjm,
for j ∈ E and m = m(j).

Then

(2.17) det SR 6= 0

algebraically if, and only if, from every vertex m0 ∈M there exists a directed path
γ0 in Γ to vertex 0.

Moreover (2.17) is equivalent to det A 6= 0 for the augmented matrix A = (R, C).

Proof of lemma 2.2. We first assume det SR 6= 0 algebraically, to construct
γ0. We address the converse claim afterwards.

Suppose det SR 6= 0. Then S is surjective, and A = (R, C) is square by propo-
sition 2.1 (i), (iii). For later use we choose C to be defined by the cycles ck of a
maximal spanning tree T0, as in (2.10). We first claim

(2.18) det A 6= 0 .

We show that ker A is trivial. Indeed, consider ξ = δx ∈ RM and µ ∈ RN such
that

(2.19) 0 = R ξ + Cµ .

Applying S we obtain SR ξ = 0, because SC = 0 by definition (2.4) of the S-
kernel part C of A. Hence det SR 6= 0 implies ξ = 0. Linear independence of the
columns ck of C, a basis for ker S, implies µ = 0. This proves claim (2.18).

Nonvanishing det A 6= 0 in turn holds, algebraically, if and only if the expansion
of the determinant contains any nontrivial monomial in the nontrivial entries rjm
of R. In other words, there exists a child selection map

(2.20)
J : M → E

m → J(m)

such that the coefficient aJ of the nontrivial monomial

(2.21) rJ :=
∏
m∈M

rJ(m),m =
∏

j∈J(M)

rj
′(x∗)
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is nonzero. The monomial is nontrivial if and only if all factors are of the form
rJ(m),m = rj

′(x∗) = rj,m(j), i.e. the mother map m: E → M ∪ {0}, is a left
inverse of J :

(2.22) m ◦ J = idM .

Summing over all such choices of J we obtain the polynominal expansion

(2.23) det A =
∑
J

aJr
J ,

where the generating monomials rJ are in one-to-one correspondence with the
child selection maps J . The coefficient aJ is given by the sub-determinant

(2.24) aJ = ± det(ckj )j∈E\J(M), k∈{1,...,N}

of the cycle basis C, with the rows of J(M) omitted. We introduce the abbrevi-
ation Č(J(M)) for that square matrix. It is now crucial to observe that

(2.25) det Č(E′) 6= 0

holds if, and only if, T = (M ∪ {0}, E′) is a maximal spanning tree of Γ. Indeed
Č(E′) defines the base change in ker S from our original cycle basis defined by
the maximal spanning tree T0 to the cycle basis defined by T .

Now consider m0 ∈ M and let us reactivate edge orientations. The tree T with
E′ = J(M) selects one unique child arrow J(m) out of any mother vertex m ∈M.
This defines a unique directed path γ0 starting atm0. Because the tree T is acyclic
the path γ0 cannot return to itself, ever. Therefore γ0 must terminate at the exit
vertex 0 6∈M, as claimed in the lemma.

Conversely, let us suppose next that there exists a di-path γ0 in Γ = (M ∪ {0}, E)
from any m ∈ M to 0. To show det SR 6= 0 algebraically, it is then sufficient
to construct a child selection J : M → E as in (2.22), such that T = (M ∪
{0}, J(M)) is a maximal spanning tree of Γ. It is easy to construct J from the
paths γ0, inductively. Consider any acyclic di-path. Attach any missing vertex
m ∈ M by following its acyclic di-path γ0 until it hits on any vertex which
has been taken care of before. By induction, this selects a unique child arrow
J(m), for any mother vertex m ∈ M. The child selection J , in turn, defines an
acyclic tree T = (M ∪ {0}, J(M)) which satisfies (2.22). In particular J defines
a nontrivial monomial (2.21) of det A with nonzero coefficient aJ as in (2.23).
Therefore det A 6= 0 algebraically.

It only remains to show that det A 6= 0 implies det f ′(x∗) 6= 0. In fact we show
that f ′(x∗) possesses trivial kernel, as follows. Let 0 = f ′(x∗)ξ = SR ξ. Then
R ξ ∈ ker S = span {c1, . . . , cN} implies that there exists a linear combination
µ ∈ RN such that 0 = R ξ + Cµ, as in (2.19). But now det A 6= 0 implies ξ = 0.
This shows det f ′(x∗) 6= 0 algebraically, and the lemma is proved. ./
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The above proof also shows the following variant in terms of child selection maps
J : M→ E which are defined to possess the mother map m: E→M ∪ {0} as a
left inverse, m ◦ J = idM. See (2.20), (2.22).

Corollary 2.3. In the setting of lemma 2.2, det SR 6= 0 holds algebraically
if, and only if, there exists a child selection map J : M → E such that T =
(M ∪ {0}, J(M)) is a maximal spanning tree of the network Γ = (M ∪ {0}, E).

The directed tree T possesses the following additional properties:

(i) any di-path in T terminates at 0;

(ii) for any edge j 6∈ T , the following alternative holds true:
(a) either, the unique cycle cj in T ∪ {j} is a di-cycle,
(b) or else, the short-cut j 6∈ T runs parallel to the di-path cj ∩ T in T ;

(iii) T does not contain any feed edge j emanating from 0;

(iv) any feed edge j defines a unique di-cycle cj in T ∪ {j}, which runs from 0
to 0.

We now switch our attention to the positivity assumption (1.4), (1.5) of the
stationary reaction rates rj = rj(x

∗) > 0; see also [Fe95].

Lemma 2.4. Let positivity assumptions (1.4), (1.5) hold.

Then any weak connected component of the reaction network Γ is strongly con-
nected.

In particular suppose regularity assumption (1.6) holds in addition, i.e. det f ′(x∗) 6=
0. Then Γ is strongly connected.

Proof. Part 2 is a consequence of part 1 and proposition 2.1 (i, iv) applied to
surjective f ′(x∗) = SR.

Part 1 is well-known. For example, analogously to the end of section 1, consider
the acyclic induced di-graph on the strongly connected components W in any
weak connected component of Γ. Consider a minimal component W , in this
order. Remaining edge arrows, if any, then point towards W , and not away from
W . The reaction fluxes rj satisfy Kirchhoff’s law at any vertex m. Therefore the
total in-flow to W must vanish. Since all reaction fluxes rj are strictly positive,
there cannot exist any edge arrows pointing towards W . Therefore the strong
component W coincides with its weak component. This proves the lemma. ./
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3 Proof of theorem 1.2: flux response

Throughout the next three proof sections let positivity assumptions (1.4), (1.5)
and regularity assumption (1.6) hold. Our proof proceeds somewhat analogously
to the proof of lemma 2.2. We crucially rely on maximal spanning trees T and
on the augmented matrix A; see (2.4), (2.5) and proposition 2.1.

To show the equivalence of the nonzero flux influence condition Φj′j∗ 6= 0 of (1.17)
with the path conditions (i) – (iv) of theorem 1.2 we first show sufficiency of (1.17).

Fix j∗ ∈ E. We first calculate the flux response vector Φ∗:= (Φj′j∗)j′∈E to the
perturbation vector ρ = e∗:= ej∗ of the reactions; see (1.7) – (1.10). The implicit
function theorem (1.8) for the concentration response δx∗:= (δxj

∗
m)m∈M of (1.11)

then implies

(3.1) S e∗ + SR δx∗ = 0 .

See (2.2), (2.3) for the stoichiometric matrix S and the reactivity matrix R. By
definition of the kernel matrix C of S in (2.4), this is equivalent to

(3.2) e∗ + A

(
δx∗

µ∗

)
= e∗ + R δx∗ + Cµ∗ = 0

for some suitable linear combination µ∗ of kernel vectors (ckj )j∈E of S. On the
other hand,

(3.3) Φ∗ = e∗ + R δx∗ = −Cµ∗

by definition (1.14) of the flux response. By regularity assumption (1.6) the
Jacobian f ′(x∗) = SR is invertible. Therefore A is invertible by lemma 2.2,
(2.18). To calculate the flux response Φ∗ we can therefore solve (3.2) for µ∗ and
insert the result in (3.3).

By the Cramer rule we immediately obtain the components

(3.4) −µ∗k det A = (−1)M+k+j∗ det Ǎj∗,M+k ,

for k = 1, . . . , N . Here Ǎj∗,M+k is the matrix A = (R, C) with omitted row j∗

and column M + k, alias column k of C. Insertion of (3.4) into (3.3) yields

(3.5)

Φj′j∗ det A = (Φ∗)j′ det A = (C · (−µ∗))j′ det A =

=
N∑
k=1

ckj′ · (−µ∗k det A) =

=
N∑
k=1

(−1)M+k+j∗ ckj′ · det Ǎj∗,M+k =

= detAj′j∗ .
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Here the matrix Aj′j∗ coincides with the augmented matrix A except for the
following two replacements

row j∗ : (0 . . . 0, c1j′ . . . c
N
j′ ) ;(3.6)

row j′ : (rj′1 . . . rj′M , 0 . . . 0);(3.7)

for j′ 6= j∗. This follows by expansion of detAj′j∗ with respect to row j∗. The
comma “ , ” separates the first M columns of R = (rjm) from the subsequent
N columns of C = (ckj ) in A = (R, C). In case j′ = j∗ we analogously ob-
tain Aj∗j∗ with only the first replacement (3.6). Recall that detAj′j∗ 6= 0 by
assumption (1.17).

Our algebraic analysis of detAj′j∗ 6= 0 now proceeds analogously to our analysis
of det A 6= 0 in the proof of lemma 2.2; see (2.20) – (2.25). This time, we can
assert the existence of a child selection J : M→ E, i.e. with the mother map m:
E→M ∪ {0} as a left inverse m◦J = idM, such that the remaining N = E−M
rows E \ J(M) of the C-part Cj′j∗ of Aj′j∗ form a cycle basis of ker S. This is
slightly delicate due to the modifications (3.6), (3.7) of Aj′j∗ .

We consider the general case j′ 6= j∗ of (3.6) and (3.7) first. The null vector in
the left part of (3.6) requires

(3.8) j∗ 6∈ J(M)

for a nonzero contribution aJr
J to detAj′j∗ . The null vector in the right part

of (3.7), on the other hand, requires

(3.9) j′ ∈ J(M) .

In particular m′:= m(j′) ∈M and hence m′ 6= 0. The remaining rows E \ J(M)
of Aj′j∗ , however, correspond to the A-rows

(3.10)
J c := E \ J ′ , with

J ′ := (J(M) \ {j′}) ∪ {j∗} .

In other words, the acyclic oriented tree T := (M ∪ {0}, J(M)) has been replaced
by

(3.11) T ′ := (M ∪ {0}, J ′) ,

where J ′ swaps edge j′ of T out and edge j∗ in.

Because detAj′j∗ 6= 0 algebraically, T ′ is a directed maximal spanning tree – albeit
with a branch point at the mother m∗ = m(j∗) in case m′:= m(j′) 6= m∗ 6= 0.
We choose the paths γ0 and γ′ in T ′ as follows.

If j′ 6= j∗ have the same mother m∗ = m′ 6= 0, then γ′ is the edge j′ with vertices
m∗ = m′ and m′ = m(j′). The path γ0 is the path from m∗ to 0 procured in
lemma 2.2.
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If the mothers m′ 6= m∗ 6= 0 are different, and both different from 0, then T ′

possesses a single branch point at m∗. Any other vertex m ∈M of T ′ possesses
a unique outgoing arrow j = J(m). We can therefore uniquely extend the two
paths γ∗ 3 j∗ and γJ 3 J(m∗) 6= j∗ emanating from m∗ forward, by J in the
acyclic tree T ′, as in T , until they either hit 0 or m′. Indeed the paths cannot
return to themselves because T ′ is acyclic. For the same reason, the paths remain
disjoint after starting at m∗. In particular exactly one of the paths extends to 0;
this path is γ0. The other path extends to m′. Extended by j′ but omitting its
head m′:= m(j′), this is γ′.

If m∗ = 0 6= m′ we choose the empty path γ0 = {m∗}. To define the path γ′

we start from m∗ = 0 along j∗ in acyclic T ′, as above, following the orientation
of T, J . This path cannot terminate at 0, or else it would define a cycle in T ′.
Hence it terminates at m′ and we can append j′ as before.

It only remains to consider the easy case j′ = j∗, with (3.6). Then γ′ consists of
the edge j∗ with its end point m∗. To construct γ0 63 j∗ we note that j∗ 6∈ J(M),
as in (3.8), still holds. In consequence we obtain T ′ = T and acyclicity of T ′.
Following the edge J(m∗) 6= j∗ out of m∗ along the orientation of T ′ = T we
reach 0 and obtain γ0. This proves the only-if-part of theorem 1.2.

To prove the converse if-part of theorem 1.2, i.e. necessity of (1.17), we start from
given disjoint paths γ0 and γ′ from m∗ = m(j∗) to 0 and j′, such that properties
(i) – (iv) of theorem 1.2 all hold. For brevity we only consider the main case of
nonzero j∗ and j′ with nonzero distinct mothers m∗ = m(j∗) 6= m(j′), leaving
the remaining cases as straightforward exercises.

We have to show that detAj′j∗ 6= 0 algebraically; see (3.5). Equivalently we
have to construct a child selection J : M → E satisfying (3.8), (3.9), such that
T ′ defined in (3.10), (3.11) becomes a maximal spanning tree of the network
Γ = (M ∪ {0}, E).

On the vertices m of γ0 ∪ γ′, excepting the head m′ = m(j′) of j′ and the mother
m∗ of j∗, we define J(m) to be the unique edge j in γ0 ∪ γ′ which emanates from
m. At m∗ we have j∗ and one other such edge; we pick this other one for J(m∗).
This construction is feasible and unique by properties (i), (ii), (iv) of the paths
γ0 and γ′. Moreover j∗ 6∈ J(M), so far, and j′ = J(m′) ∈ J(M), as required
in (3.8) and (3.9). To complete the construction of J consider any remaining
vertex m ∈M. By lemma 2.2 there exists an oriented path γm from m to 0. We
proceed by iteration on m. At each step we terminate the path γm as soon as
it hits any vertex m0 where J has already been constructed. The path γm then
extends J to all previous vertices on γm. This completes the definition of J .

The resulting graph T ′ defined in (3.10), (3.11) is acyclic, by the above inductive
construction. Indeed γ0 ∪ (γ′ \ j′) is acyclic, by nonintersection property (iv) of
γ′. Assuming acyclicity before each induction step preserves acyclicity. Indeed
the path γm is acyclic by definition. Because γm starts at m, outside the previous
construction, and terminates upon first contact, it cannot create any new cycle.
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This proves that T ′ is acyclic. Hence T ′ is a tree which omits E −M = N edges.
Since dimH1 = N is the number of independent cycles, by proposition 2.1, the
subgraph T ′ will therefore be a maximal spanning tree, automatically. This shows
det Φj′j∗ = detAj′j∗ 6= 0 algebraically and completes the proof of theorem 1.2. ./

Our proof above has used the construction of a maximal spanning tree T ′ from
a maximal spanning tree T , as an intermediate step; see (3.8) – (3.11). We
summarize the resulting variants of theorem 1.2 as a separate characterization
of algebraically nonzero fluxes Φj′j∗ 6= 0. These corollaries also elucidate how
the influence of a perturbation of reaction j∗ spreads to j′ via di-cycles and side
branches.

Corollary 3.1. Let j′ 6= j∗ by any two distinct reaction edges and let the as-
sumptions of theorem 1.2 hold. Then algebraically nonzero flux Φj′j∗ as stated
in (1.17) implies the following.

Consider any child selection map J : M→ E with (2.22) such that j∗ 6∈ J(M) 3
j′. To J associate the swapped tree T ′:= (M ∪ {0}, J ′) which swaps edge j′ out
of, and edge j∗ 6= j′ into the oriented tree T := (M ∪ {0}, J(M)) of J ; see (3.10),
(3.11). Then T ′ is a maximal spanning tree of the reaction network Γ.

In particular j′ ∈ T lies on the unique cycle through j∗ in J(M) ∪ {j∗}. Suppose
this cycle is not oriented. Then the cycle consists of two distinct oriented paths γ∗

and γ′ emanating from the same mother vertex m∗ = m(j∗). The path γ∗ starts
with leading edge j∗, and the path γ′ contains the edge j′. The paths are disjoint,
except for their start at m∗ and the second vertex where they meet again to form
a cycle with two parallel branched directions.

Corollary 3.2. Let j′ 6= j∗ be any two distinct edges and let the assumptions
of theorem 1.2 hold. Assume, conversely to corollary 3.1, that there exists a
child selection map J : M → E such that j∗ 6∈ J(M) 3 j′ and, in addition the
associated swapped graph T ′ does not possess any directed cycle.

Then the flux Φj′j∗ is algebraically nonzero.

4 Proof of theorem 1.3: transitivity

To prove transitivity theorem 1.3 we consider any three edges j1
∗, j2

∗, j2
′ ∈ E

such that j1
∗ ; j2

∗ ; j2
′. We have to show j1

∗ ; j2
′. In other words we have

to show the implication

(4.1) Φj2′j2∗ 6= 0 , Φj2∗j1∗ 6= 0 =⇒ Φj2′j1∗ 6= 0 ,

for algebraically nonzero flux responses; see (1.23). Omitting trivial cases we may
assume

(4.2) j1
∗ 6= j2

∗ 6= j2
′ .
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Our proof will proceed via the di-paths γ0
i , γ

′
i associated to the nonzero flux

response Φj′ij
∗
i

in (4.1), for i = 1, 2 and j′1:= j∗2 ; see theorem 1.2. In subsec-
tion 4.1 we fix some notation on the di-paths γ0

i , γ
′
i, their vertices, edges, and

concentrations. The transitivity claim Φj2′j1∗ 6= 0 of (4.1) is established, again
by theorem 1.2, via a general construction of paths γ0, γ′. Our construction is
sketched at the end of subsection 4.1. As a warm-up we collect certain special
cases in 4.2. The general construction is detailed in 4.3.

4.1 Notation and terminology

For i = 1, 2, let γ0
i denote the path from vertex m∗i to 0 established in theorem 1.2

for Φj′ij
∗
i
6= 0. Similarly γ′i denotes the path from m∗i to the final edge j′i: m

′
i → m′i.

See fig. 1.1. In our specific case (4.1) we have j′1 = j∗2 and hence m∗2 = m′1. The
paths γ0

i , γ
′
i satisfy properties (i) – (iv) of theorem 1.2. Omitting indices, we have

to construct paths γ0 and γ′ with m∗:= m∗1 and final edge j′ = j′2 from m′:= m2
′

to m′:= m′2 such that properties (i) – (iv) hold for γ0, γ′. In summary,

(4.3) m∗ = m∗1 , j
∗ = j∗1 , j

′
1 = j∗2 , m

∗
2 = m′1 , m

′ = m′2 , j
′ = j2

′ .

For arbitrary acyclic di-paths γ with designated orientation ordering it is con-
venient to denote open and closed intervals on γ by their bounding vertices
as (m1, m2), [m1, m2] etc., as on the real line. To specify intervals on γ′i we
use the notation (m1, m2)

′
i etc., and similarly for intervals on γ0

i . For example
γ0
i = [m∗i , 0]0i , j

′
i = (m′i, m

′
i)
′
i and γ′i = [m∗i , m

′
i)
′
i. For vertices m1, m2 on the

same path γ0
1 or γ′1 we say that m2 occurs later than m1 if m1 precedes m2 in

the order of γ0
1 or γ′1. For the same configuration on γ0

2 or γ′2, in contrast, we say
that m2 occurs to the right of m1.

We use γi:= γ0
i ∪ γ′i to denote the union of the paths γ0

i and γ′i, as a set. Consider
intersection vertices

(4.4) m ∈ (γ1 ∩ γ2) \ {m∗1}

other than the shared starting vertex m∗ = m∗1 of γ0
1 and γ′1. Then we call m

white if m ∈ γ0
1 and black for m ∈ γ′1. See nonintersection property (iv) of

theorem 1.2. The only shared start vertex m:= m∗1, if also present in γ2, is called
white if j∗ = j1

∗ ⊆ γ′1 and black for j∗1 ⊆ γ0
1 ; see property (ii). Correspondingly,

we call c(m) ∈ {0, ′} the color of m. Note

(4.5) m ∈ γc(m)
1 ∩ γ2 .

Also note that the color of m∗2 = m′1 ∈ γ′1 ∩ γ0
2 ∩ γ′2 is black, unless

(4.6) m∗1 = m∗2 and j∗1 ⊆ γ′1 .

We treat this later case separately in 4.2, as case 1.
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Our general construction of the di-paths γ0 = [m∗, 0]0 and γ′ = [m∗, m′)′ with
properties (i) – (iv) of theorem 1.2 hinges on the construction of a cut-pair {µ0, µ′}
of vertices µ0 and µ′ defined by the following three properties

(4.7)

(a) µ0 ∈ γ0
2 and µ′ ∈ γ′2 ;

(b) µ0 and µ′ are of opposite color ;

(c) any black or white intersection vertexm of γ1 ∩ γ2

which is strictly to the right of {µ0, µ′} on γ2

occurs strictly later than {µ0, µ′} on γ1 as well .

With the above notation and terminology our general construction of the paths
γ0, γ′ which will prove transitivity claim (4.1) and theorem 1.3 proceeds as follows.
Let {µ0, µ′} be a cut-pair. Define the di-paths

(4.8)
γ0 := [m∗1, µ

0]c
0

1 [µ0, 0]02 ;

γ′ := [m∗1, µ
′]c
′

1 [µ′, m′2)
′
2

by concentration at the cut-vertices µ0, µ′. Here c0 = c(µ0), c′ = c(µ′) ∈ {0, ′}
denote the colors of the cut vertices µ0, µ′, respectively. In subsection 4.3 below
we show that cut-pairs {µ0, µ′} exist and that the above di-paths γ0 and γ′ satisfy
properties (i) – (iv) of theorem 1.2 – establishing transitivity.

4.2 Special cases

In this subsection we address the construction of di-paths γ0, γ′ with proper-
ties (i) – (iv) of theorem 1.2, in several special cases. We begin with the case
m∗1 = m∗2, j

∗
1 ⊆ γ′1 of coloring conflict (4.6). Afterwards we address the cases

where one of the vertices m∗1, m
∗
2, m

′
2 is zero.

Case 1: m∗1 = m∗2, j
∗
1 ⊆ γ′1.

We then define γρ:= γρ2 for ρ ∈ {0, ′}. We have to show properties (i) –
(iv) of theorem 1.2 follow for γρ from the corresponding properties for
γρ2 ; see fig. 1.1.

Emanation property (i) of γρ holds becausem∗ = m∗1, by assertions (4.3),
and because m∗1 = m∗2, by assumption.

Leading edge property (ii) of γρ claims

(4.9) j∗ ⊆ γ0
2 ∪ γ′2 .

Assertion (4.3) implies j∗ = j∗1 , and j∗1 ⊆ γ′1 by assumption. Because
m′1 = m∗2 by (4.3), and m∗2 = m∗1 by assumption, we observe that γ′1 =
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[m∗1, m
′
1)
′
1 = [m′1, m

′
1)
′
1 contains but the single edge j′1. In particular

j∗1 = j′1. But (4.3) asserts j′1 = j∗2 . Together, we conclude the leading
edge property (ii) of γρ = γρ2 because j∗ = j∗1 = j′1 = j∗2 and because (4.9)
holds for γρ2 .

Termination property (iii) is identically true for γ0 and γ0
2 . For γ′ it fol-

lows from γ′2 because (4.3) asserts j′ = j′2. Nonintersection property (iv)
holds, identically, for γρ and γρ2 . This settles case 1.

Case 2: At least one of the verticesm∗1, m
∗
2, m

′
2 is 0.

Consider any feed reaction j0 ∈ E, i.e. the mother vertex m0:= m(j0)
satisfies m0 = 0. Then rj0 is a constant parameter and hence rj0m = 0
for all m ∈M; see (1.3). Therefore definition (1.14) of the flux response
implies

(4.10) Φj0j = δj0j

for all j ∈ E.

Now consider the casem′2 = 0, with child edge j′2: m
′
2 → m′2. Then (4.10)

with j0:= j′2, j:= j∗2 and assumption (4.1) imply δj′2j∗2 = Φj′2j
∗
2
6= 0, i.e.

j′2 = j∗2 and m′2 = m∗2 = 0. It therefore remains to consider the cases
m1
∗ = 0 and m∗2 = 0.

Next suppose m∗2 = 0. Since m∗2 is the mother of j∗2 and assertion (4.3)
implies j∗2 = j′1 we can invoke (4.10) with j0:= j∗2 , j:= j∗1 . Assump-
tion (4.1) then yields δj∗2 j∗1 = Φj∗2 j

∗
1
6= 0, i.e. j∗1 = j∗2 , which has trivially

been excluded in (4.2).

In the remaining case m∗ = m∗1 = 0, we first recall theorem 1.2. Since
we have to take the trivial path γ0 = {m∗}, we see that

(4.11) Φj′j∗ 6= 0

algebraically if, and only if, there exists a di-path γ′ from m∗ = 0 with
leading edge j∗ and terminating with edge j′. For Φj∗2 j

∗
1
6= 0 we are

given such a di-path γ′1 from m∗ = 0 to j′1 = j∗2 . Since Φj′2j
∗
1
6= 0 we

are also given a di-path γ′2 from m∗2 = m′1 = m(j′1) to the edge j′ = j′2:
m′2 → m′2; see (4.3). Let γ′ be defined as the concatenation di-path

(4.12) [m∗, m′1]
′
1 [m∗2, m

′
2)
′
2

with shared vertex m′1 = m∗2 and all intermediate loops removed. Then
(4.3), (4.11) imply Φj′2j

∗
1

= Φj′j∗ 6= 0 algebraically, as claimed in (4.1).
This settles the case m∗1 = 0.
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4.3 Cut-pairs and di-paths

To complete the proof of transitivity theorem 1.3, in the general case, two tasks
remain. Given general di-paths γ0

i and γ′i with properties (i) – (iv) of theo-
rem 1.2, for i = 1, 2, we have to construct a cut-pair {µ0, µ′} of vertices with
properties (4.7) (a) – (c). In a second step we have to show that the di-paths γ0

and γ′ defined in (4.8) also satisfy properties (i) – (iv) of theorem 1.2.

We show the existence of a cut-pair {µ0, µ′} for the paths γ1 = γ0
1 ∪ γ′1 and

γ2 = γ0
2 ∪ γ′2 as follows. First we color all vertices m of γ1 ∩ γ2 black or white;

see (4.4) – (4.5). We exclude the cases where zero vertices m∗1, m
∗
2, or m′2 arise

and cyclic paths γci may occur; these cases have already been treated in 4.2. Of
course we also exclude the only case of (4.6) where m∗2 might be white. Therefore
m2
∗ is colored black and 0 ∈ γ0

2 ∩ γ0
1 is colored white. We construct the cut-pair

{µ0, µ′} from a pair of candidates µρ2 ∈ γ
ρ
2 , ρ ∈ {0, ′}, by an iterative process. We

start with µ0
2:= 0 ∈ γ0

2 ∩ γ0
1 , white, and with µ′2 as the rightmost colored vertex

on γ′2. Since m∗2 = m′1 ∈ γ′2 ∩ γ′1 is black, µ′2 indeed exists. Two cases arise.

Case 1: µ0
2 and µ′2 are both white.

Let µρ2 denote the earlier of the two vertices µ0
2 and µ′2 on γ0

1 . We
then discard all vertices of γ0

1 which occur strictly later than µρ2 on γ0
1 ,

including the other vertex µσ2 of µ0
2, µ

′
2 defined by σ 6= ρ. Note µρ2 ∈ γ

ρ
2 \

{m∗2} is still white. Define a new vertex µσ2 to be the rightmost colored
vertex, on the other branch γσ2 of γ2 which has remained on γσ2 after the
above removal of some white vertices. If µσ2 is still white, reiterate the
above strict removal process of white vertices, with {µ0

2, µ
′
2}:= {µ

ρ
2, µ

σ
2},

until case 2 occurs.

Case 2: µ0
2 and µ′2 are of opposite color.

Note that this case has to occur eventually, because the vertex 0 ∈ γ0
2

is white and {m∗2} = γ0
2 ∩ γ′2 is black. When case 2 first occurs we

terminate the iteration and define the cut-pair

(4.13) {µ0, µ′} := {µρ2, µσ2} .

Actually, we still have to show that the cut-pair properties (4.7) hold with this
definition. Property (4.7) (a) of opposite branches holds because ρ 6= σ. Prop-
erty (4.7) (b) of opposite colors holds by termination at case 2. Ordering prop-
erty (4.7) (c) holds because we only have removed all later white vertices, in
case 1, and have always chosen the rightmost remaining vertex µσ2 . This proves
that (4.13) defines a cut-pair {µ0, µ′}.
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To complete the proof of transitivity theorem 1.3 it now remains to show that
the di-walks γ0 and γ′, defined by concatenation (4.8) at the cut-pair {µ0, µ′},
satisfy properties (i) – (iv) of theorem 1.2; see fig. 1.1. We also have to show that
the walks γ0, γ′ are paths, i.e. are without self-intersections.

Emanation property (i) is immediate because γ0 and γ′ both start from m∗ = m∗1,
see (4.3), (4.8). Termination property (iii) is immediate, likewise, by construc-
tion (4.8) and because (4.3) asserts j′ = j′2. We address intersections (iv) and
self-intersections of γ0, γ′ next, and finish with property (ii) on the leading edge
j∗ = j∗1 thereafter.

Nonintersection property (iv) follows from the same property for each of the pairs
γ0
i , γ

′
i and properties (4.7) of the cut-pair µ0, µ′. Indeed (iv) for γ0

i , γ
′
i and i = 1, 2

implies

(4.14) {m∗1} ⊆ [m∗1, µ
0]c

0

1 ∩ [m∗1, µ
′]c
′

1 ⊆ γ0
1 ∩ γ′1 = {m∗1}

because the colors c0, c′ of µ0, µ′ are opposite. Similarly µ0 6= µ′ and µρ ∈ γρ2
imply

(4.15) [µ0, 0]02 ∩ [µ′, m′2)
′
2 ⊆ (γ0

2 ∩ γ′2) \ {m∗2} = ∅ .

We consider any diagonal intersection vertex

(4.16) m ∈ [m∗1, µ
0]c

0

1 ∩ [µ′, m′2)
′
2

next. Since µ′ and µ0 have opposite color, c0:= c(µ0) implies µ′ 6∈ γc01 . Therefore
any intersection vertex m ∈ [µ′, m′2)

′
2 ∩ γc

0

1 must lie strictly to the right of µ′ on γ′2.
Hence m must occur strictly later than µ0 on γc

0

1 by cut-pair property (4.7) (c).
This proves that the intersection (4.16) is empty. A precisely analogous argument
shows [m∗1, µ

′]c
′

1 ∩ [µ0, 0]02 = ∅. This proves nonintersection property (iv) of the
paths γ0, γ′ constructed in (4.8).

We show next that the di-walks γ0, γ′ defined in (4.8) by concatenation of di-
paths at the cut-pair {µ0, µ′} are actually di-paths. For γ0 we have to show that
the intersection

(4.17) [m∗1, µ
0]c

0

1 ∩ [µ0, 0]02 = {µ0}

consists of the concatenation point µ0, only. Similarly to (4.16), suppose there
exists any other intersection vertex m 6= µ0 in the intersection. Then m ∈
(µ0, 0]02 lies strictly to the right of cut-vertex µ0 on γ0

2 . Cut-pair property (4.7) (c)
then implies m ∈ [m∗1, µ

0]c
0

1 ⊆ γc
0

1 ⊆ γ1 occurs strictly later than µ0 on γ1

– a contradiction. This proves claim (4.17). The analogous argument on γ′2
establishes [m∗1, µ

′]c
′

1 ∩ [µ′, m′2)
′
2 = {µ′}. This shows that γ0, γ′ are di-paths.

Property (ii), that one of the paths γ0, γ′ contains the starting edge j∗ = j∗1 , is
immediate from the same property for the di-paths γ0

1 , γ
′
1, unless the cut-vertex

µρ coincides with the colored vertex m∗1 ∈ γρ2 . Let cρ:= c(µρ) denote the color
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of µρ = m∗1. Let σ 6= ρ. Then µσ 6= µρ = m∗1 is the other cut-vertex, and is
of the opposite color cσ:= c(µσ) 6= cρ. By definition (4.4) – (4.5) of the color
cρ of µρ = m∗1, the edge j∗1 emanating from m∗1 is the first edge of γc

ρ

1 . But by
definition (4.8), the path γσ contains the piece [m∗1, µ

σ]c
σ

1 and hence, by µσ 6= m1
∗,

the first edge j∗1 = j∗. This proves the leading edge property (ii) for γσ. It also
completes the proof of theorem 1.3 via theorem 1.2. ./

5 Proof of theorem 1.1: concentration response

Our proof of theorem 1.1 on the concentration response uses theorem 1.2 on the
flux response, which was proved in section 3 above. We distinguish two cases for
the concentration response δx∗m of the metabolite m ∈M to a rate perturbation
of reaction j∗ ∈ E. Because we have assumed det A 6= 0, algebraically, any
vertex m ∈M possesses a child reaction j′ = J(m) by the child selection map J ;
see (2.20) and corollary 2.3. In subsection 5.1 we assume j′ 6= j∗. Subsection 5.2,
in contrast, considers the case where j′ = j∗ is the only child of m. This covers
all cases.

5.1 The case m = m(j′), j′ 6= j∗.

In this case the flux-concentration relation (1.14) reads

(5.1) Φj′j∗ = rj′mδx
∗
m

with rj′m 6= 0, algebraically. Therefore, algebraically, a nonzero concentration
response δx∗m 6= 0 is equivalent to a nonzero flux response Φj′j∗ 6= 0. Theorem 1.2,
equivalently, provides us with paths γ0 and γ′ which satisfy properties (i) – (iv),
there. We have already observed how the paths γm of theorem 1.1 and γ′ of
theorem 1.2 only differ by appending/removing the final edge j′ of γ′. In the
notation of section 4 we therefore define γm:= [m∗, m]′ by omission of j′ from
γ′. We keep γ0:= [m∗, 0]0. Then γ0, γm satisfy the property list (i) – (iv) of
theorem 1.1, equivalently to δx∗m 6= 0. Therefore (5.1) and theorem 1.2 imply
theorem 1.1.

5.2 The case when j′ = j∗ is the single child of m = m(j′).

In this case we have already observed in (1.19) that

(5.2) δx∗m = −1/rj∗m 6= 0

for m = m(j′) = m(j∗) = m∗. With the trivial path γm:= {m∗}, the state-
ments (i) – (iv) of theorem 1.1 hold true, directly. Indeed lemma 2.2 asserts the
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Figure 6.1: Left: the monomolecular chain Γ of 3 metabolites M = {A, B, C}
and 4 reactions E = {1, 2, 3, 4}. Right: the flux influence graph F (Γ). Only
the feed reaction 1 influences all fluxes, including itself. The other reactions are
without any influence.

existence of a di-path γ0 from m∗ to 0, under our standing regularity assump-
tion (1.6) that det fx = det SR 6= 0. Evidently the di-path γ0 contains the single
child edge j∗ emanating from m∗. By construction, therefore, the paths γ0, γm

satisfy all properties (i) – (iv) required in theorem 1.1. This completes the proof
of theorem 1.1. ./

6 Examples

In this section we review the monomolecular examples of the companion paper
[MoFi14] from a flux transitivity point of view. We also discuss several tetrahedral
di-graphs on four metabolites with single feed and exit edges from/to vertex 0. All
examples satisfy the regularity condition (1.6), algebraically, as is easily checked
via the exit paths γ0 to 0 recommended in lemma 2.2; see (2.17).

We present each example, first, as a network graph Γ = (M ∪ {0}, E). We label
vertices by 0 and metabolites A, B, C, · · · ∈M. We label the directed reaction
arrows by positive integers 1, 2, 3, · · · ∈ E. Next to the network graph Γ we
indicate the flux influence graph F (Γ), with the flux components as vertices and
flux influences as arrows. Flux components are indicated in braces {j1, j2, . . . }
with the exception of singletons j∗. We use the notation {j∗} to indicate true
self-loops Φj∗j∗ 6= 0, i.e. nonzero self-influence j∗ ; j∗. In case Φj∗j∗ = 0 we
omit the braces. This notation facilitates the determination of the influence sets
I(j∗) from the influence graph F (Γ); see (1.26). In each example we indicate the
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Figure 6.2: Left: a monomolecular single di-cycle of 4 metabolites M =
{A, B, C, D} with 6 reactions E = {1, . . . , 6}. Right: the flux influence graph
F (Γ).

bare-handed derivation of the flux influence graph F (Γ) and comment on some
peculiarities. For the closely related concentration response, which is the main
concern in experiments, we refer back to section 5 and theorem 1.1.

Our first example is the monomolecular chain of fig. 6.1. Any reaction edge j∗

other than the feed 1 is a single child of a mother vertex m = m(j∗) ∈ M.
Therefore Φj′j∗ = 0 for all j′; see (1.18). The feed case j∗ = 1, m∗ = 0 has been
discussed in section 4.2, case 2. Specifically (4.11) implies Φj′1 6= 0 for all j′ ∈ E,
because any edge j′ is reachable from the leading edge j∗ = 1 by a di-path γ′.
This proves the flux influence graph F (Γ) shown in fig. 6.1. The extension to a
monomolecular chain with any finite number of metabolites is straightforward,
without further calculation.

Our second example Γ is the monomolecular single di-cycle A
2−→ B

3−→ C
4−→ D

5−→
A with feed 1 to A and exit 6 of C. The single child reactions 2, 3, 5 appear at
the bottom level of zero influence in the flux influence graph F (Γ). The entire

cycle is driven by j∗ = 4 and path γ0 = {C 6−→ 0}. In fact an admissible path
γ′, in the sense of properties (i) – (iv) of theorem 1.2, can reach any edge j′ in

the cycle, from m∗ = C, and no other edge. Indeed γ0: C
6−→ 0 is the closed

edge 6 including the two end points m∗ = C and 0. The path γ′ from m∗ = C
to j′ = 3 terminates at the open edge j′ and hence does not intersect γ0 at C.
This complies with disjointness property (iv) of theorem 1.2. Edge j∗ = 6 from
m∗ = C requires the same exit path γ0 and hence influences the same other edges
of the cycle, but not itself. The single feed 1 influences all edges including itself,

25



0

A

B

C

0

1

2

3

6

{2,5}

43 6

metabolic dicycle

F

flux influence graph

D

5

4

{1}

Figure 6.3: Left: monomolecular branching network Γ. The network coincides
with fig. 6.2, except for the reversed directions of reactions 4, 5 ∈ E. The central
di-cycle becomes a nonoriented cycle with two parallel forward branches 2, 3 and
5, 4 emanating from metabolite A and joining at C. Right: the flux influence
graph F (Γ) changes drastically, compared to fig. 6.2.

as before.

Example 3, of figure 6.3, is a variant of figure 6.2 where only the directions of
reactions 4, 5 have been reversed. This splits the central di-cycle into the two

parallel branches A
2−→ B

3−→ C and A
5−→ D

4−→ C. The single child reactions
become 3, 4, 6. Each of the branch entries 2 and 5, separately, now influences
both branches, but not the shared exit 6 ⊆ γ0. The influence of the single feed 1
remains global.

Example 4, of figure 6.4, features two overlapping di-cycles (a): B
3−→ C

4−→ D
8−→

F
9−→ B, and (b): A

2−→ B
3−→ C

6−→ E
7−→ A. As before, single children 2, 3, 7, 9

exert no influence, whereas the influence of the single feed 1 is global.

Let us consider the influence of j∗ = 6, m∗ = C, next. By the unique exit di-path

γ0: C
4−→ D

5−→ 0, the edge j∗ = 6 activates the whole di-cycle (b) via a di-path
γ′. Because γ0 is unique, however, the leading edge j∗ = 6 cannot influence any
other edges. Swapping the perturbed edge j∗ from γ′ to become the leading edge
j∗ = 4 of the exit path γ0, instead, produces the same influence set

(6.1) I(4) = I(6) = {2, 3, 7, 6} = (b)

which spans the full di-cycle (b). This illustrates corollary 3.1 on cycle influence.

The influence sets I(5) = I(8) of the two outgoing reactions 5 and 8 of m∗ = D
are also identical a priori, by swapping of j∗. Let us therefore consider j∗ = 5,
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Figure 6.4: Left: a monomolecular network Γ of two overlapping di-cycles with
6 metabolites M = {A, . . . , F} and 9 reactions E = {1, . . . , 9}. Right: the
flux influence graph F (Γ). Note the global influence of single feed 1, and the
absent influence of single children 2, 3, 7, 9. The branching pairs 5, 8 and 4, 6,
respectively, share the same influence sets.

without loss of generality. The only possible exit path γ0 from m∗ = D is the

closed edge γ0: D
5−→ 0. Again the other path γ′ from m∗ = D with leading edge

8 can traverse the whole di-cycle (a) to which 8 belongs. The forward branching
4, 6 at metabolite vertex C in di-cycle (a), however, also opens access to the
whole di-cycle (b) via reaction arrow 6. This shows that the influence sets

(6.2) I(5) = I(8) = {2, 3, 4, 6, 7, 8, 9} = (a) ∪ (b)

span both di-cycles (a) and (b).

It is an amusing and highly recommended exercise to revert one or both orienta-
tions of the reaction branch 6, 7 and of the pair 8, 9, independently. The arising
three cases of mixed di-cycles and branching are left to the reader.

Instead we consider the four metabolic networks Γ of fig. 6.5, (I) – (IV). They
feature the complete graph of 4 vertices M = {A, B, C, D} and 6 reactions
1, . . . , 6. Up to isomorphism, there is only one irreversible orientation with a 4-
element di-cycle, and one without; see cases I – III, and IV, respectively. We then
choose various single feeds 1 and single exits 8 such that regularity condition (1.6)
holds in the guise of lemma 2.2 and (2.17).
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Figure 6.5: Four examples I – IV of monomolecular metabolic networks Γ with
a complete irreversible di-graph on 4 metabolites M = {A, B, C, D} with 8 re-
actions E = {1, . . . , 8} and varying positions of single feed 1 and single exit 8.

Examples I – III feature a 4-element di-cycle A
3−→ B

4−→ C
5−→ D

2−→ A, whereas
example IV does not. The flux influence graphs F (Γ) are specified to the right of
each metabolic network Γ.

As always, the single feed 1 exerts global influence, and the single children exert
none. In examples I and II, all other mothers have out-degree 2, so that swapping
of j∗ between the two outgoing edges produces identical results. In example I this
applies to the outgoing edge pairs j∗ ∈ {3, 6}, {4, 7}, and {5, 8}; example II has
the pairs {2, 8}, {3, 6}, {4, 7} instead.

Consider example I, j∗ = 6 with m∗ = A. The exit di-path γ0: m∗ = A
6−→ C

8−→ 0
is possible and makes edges j′ = 3, 4, 7, 2, only, accessible to the complementary

paths γ′. Choosing the other exit di-path γ0: m∗ = A
3−→ B

4−→ C
8−→ 0 with

leading edge 3 makes edge j′ = 6 accessible to γ′, only. This establishes the
influence sets

(6.3) I(3) = I(6) = {2, 3, 4, 6, 7} .

The arguments for I(4) = I(7) = I(3) are similar and are omitted.
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Consider example I, j∗ = 8, m∗ = C next. This forces γ0: m∗ = C
8−→ 0 as the

only exit path. The complementary path γ′ can then roam all over the tetrahedral
edges 2, . . . , 7, only. This proves

(6.4) I(5) = I(8) = {2, . . . , 7}

and establishes the flux influence graph F (Γ) of example I We omit the rather
analogous details which derive F (Γ) in example II.

In example III we encounter out-degree 2 at vertex A and out-degree 3 at B.
This allows swapping of j∗ ∈ {3, 6} at A, and proves I(3) = I(6). We also note
that any exit di-path γ0 from any metabolite m∗ must follow the sequence

(6.5) C
5−→ D

2−→ A
3−→ B

8−→ 0

from vertex m∗ on. This seriously restricts the choices of the complementary
paths γ′ from m∗, and allows us to determine the influence sets I(j∗) easily, via
the mother vertex m∗ = m(j∗):

(6.6)

j∗ = 3, 6 ; m∗ = A ; I(3) = I(6) = {2, 5 , 6}
j∗ = 4 ; m∗ = B ; I(4) = {2, . . . , 7} \ {7}
j∗ = 7 ; m∗ = B ; I(7) = {2, . . . , 7} \ {4}
j∗ = 8 ; m∗ = B; I(8) = {2, . . . , 7} .

For m∗ = B we have used that property (iii) of theorem 1.2 and (6.5) force j∗

to be the leading edge of γ′ in cases j∗ = 4, 7, but not 8. For j∗ = 8 ⊆ γ0 the
paths γ′ roam all over the tetrahedral edges 2, . . . , 7 freely. This establishes the
flux influence graph F (Γ) of example III. The analogous details of example IV
are left to the reader as a final exercise.
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